

HEART D4.8 – Final BEMS Hardware Components 1
Version 1.0

TABLE OF CONTENT

HEART D4.8 – Final BEMS Hardware
Components

January 2020

This project has received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement No 768921.

Ref. Ares(2020)614503 - 31/01/2020

HEART D4.8 – Final BEMS Hardware Components 2
Version 1.0

Project title Holistic Energy and Architectural Retrofit Toolkit

Project acronym HEART

Grant Agreement No. 768921

Project call EEB-05-2017 Development of near zero energy building
renovation

Work Package WP4

Lead Partner CTIC

Contributing Partner(s) STILLE, POLIMI

Security classification Public

Contractual delivery date 31/01/2020

Actual delivery date 31/01/2020

Version 1.0

Reviewers Fabrizio Leonforte (POLIMI), Mario Maistrello (ZH)

HISTORY OF CHANGES

Version Date Comments Main Authors

0 16/12/2019 First Version of Deliverable Development Plan Martin Álvarez-Espinar (CTIC)

0.1 27/12/2019 First version of the document Martin Álvarez-Espinar (CTIC)

0.2 09/01/2020 MIMO & HP configurations updated. New section
of energy management devices.

Daniel Ibaseta; Martin
Álvarez-Espinar (CTIC)

0.3 13/01/2020 Quality review Fabrizio Leonforte (POLIMI)

0.4 16/01/2020 Changes in the workflow of DHW fan-coils. Martin Álvarez-Espinar (CTIC)

1.0 28/01/2020 Issue of final versione Martin Álvarez-Espinar (CTIC)

HEART D4.8 – Final BEMS Hardware Components 3
Version 1.0

TABLE OF CONTENTS

1. Hardware Components Overview 6

1.1. Networks and Interaction with Building Devices 8

2. Wireless Local Area Network 10

2.1. Network Architecture and Implementation 11

2.2. Setup and Operation 14

3. Building Controller and Gateway 16

3.1. Implementation 16

3.2. Offline Control Logic 18

4. Fan-Coils 21

4.1. On-board Control System 22

4.2. Communication Interface and Sensors 23

Smart Fan-Coil Configuration 23

Smart Radiator Configuration 24

DHW Fan-Coil Configuration 24

4.3. Installation and Pinout 27

4.4. Device Control 30

4.5. Implementation of Control logic 31

Control of Smart Fan-Coils 32

Control of Smart Radiators 33

Control of DHW Fan-Coils 34

5. Heat pump Gateway 35

5.1. Implementation and Configuration 36

5.2. Device Control 37

6. MIMO Gateway 40

6.1. Implementation and Configuration 40

6.2. Device Control 42

7. Thermal Energy Management 45

HEART D4.8 – Final BEMS Hardware Components 4
Version 1.0

Disclaimer
This document contains confidential information in the form of the HEART project findings, work and
products and its use is strictly regulated by the HEART Consortium Agreement and by Contract no. 768921.

Neither the HEART Consortium nor any of its officers, employees or agents shall be responsible or liable in
negligence or otherwise howsoever in respect of any inaccuracy or omission herein.

The contents of this document are the sole responsibility of the HEART consortium and can in no way be
taken to reflect the views of the European Union.

This project has received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under grant agreement No 768921.

HEART D4.8 – Final BEMS Hardware Components 5
Version 1.0

EXECUTIVE SUMMARY

The Building Energy Management System (BEMS) is one of the key components of the platform. It
implements the operation logic to control and distribute the electric energy flux, thermal energy and
information, coordinating the main devices —MIMO, HP, thermal storage tanks, PV and fan-coils—, and
monitoring their status and configurations. This document describes the hardware components that enable
communication and interaction of devices within the BEMS: Heat Pump Gateway, MIMO Gateway, Smart
fan coil interfaces and Building Controller and Gateway.

All the BEMS elements are linked among them through different networks that protect and guarantee the
continuous operation of the system. The system is based on NarrowBand-Internet of Things (NB-IoT) as a
direct mechanism to access the Internet, and a WiFi mesh network. The software of the main interface
components of the building (i.e., MIMO Gateway, Heat Pump Gateway(s), fan-coils), and the Building
Controller and Gateway implements the standards of the W3C Web of Things. It will maximise the level
of interoperability and scalability of the system.

The Building Controller and Gateway is the core component of the IT system in the building. It acts as a
proxy between the devices deployed in the building (i.e., fan-coils, Heat Pump and MIMO) and the
external services such as the cloud control platform. This device, implemented on an UP Squared board,
plays the role of offline BEMS controller.

Both the Heat Pump and the MIMO are managed in a similar way, since they implement an internal
Modbus/TCP server as principal communications channel. These devices will be connected directly to
gateways that will translate the Modbus protocol to the Web of Things model. These gateways are
implemented on UP Board devices and become the interface for those main appliances.

Smart fan-coils have an internal on-board control system that acts directly on the device sensors and
actuators. This control system is connected to the BEMS requests through an interface module that allows
the BEMS to controls the basic operations of the appliance (i.e., ON/OFF, critical situation, season
change, and fan speed). Apart from the internal parameters of the appliances, smart fan-coils include
sensors to monitor the environmental variables such as air temperature and relative humidity of rooms.

This document is an update of the deliverable D4.7 including the latest adjustments and configurations.

HEART D4.8 – Final BEMS Hardware Components 6
Version 1.0

1. HARDWARE COMPONENTS OVERVIEW

The Building Energy Management System (BEMS) is one of the key components of the platform. The BEMS
implements the operation logic to control and distribute the electric energy flux, thermal energy and
information, coordinating the main devices —MIMO, HP, thermal storage tanks, PV and fan-coils— in the
building. The BEMS also enables a direct interaction with the building’s users, reporting about the building
performance in terms of energy, allowing them to control it.

As shown in the following figure, the main components of the BEMS have interactions among them in
terms of electric energy, thermal energy and information. This document describes the communication
and control devices involved in the operation of the system but focused on the information flow.

Fig. 1. BEMS components and the interaction among them

Having this in mind, the BEMS is implemented by 3 different levels of controls:

Level 1: a root control system (firmware) embedded in each HEART component (e.g. heat pump,
MIMO and smart fan coils); at this level the control will be focused to the protection of the operation
of the components (e.g. over-temperature, over-current, short circuit, etc.) and on the internal
management of each appliance;

HEART D4.8 – Final BEMS Hardware Components 7
Version 1.0

Level 2: a basic offline control logic, physically implemented at building level, in a specific hardware
component called Building Controller and Gateway; and

Level 3: an adaptive-predictive online logic implemented on the cloud platform.

Fig. 2. BEMS logic control levels

The Building Controller and Gateway is the cornerstone of the level 2, needed also in the level 3. It
provides the basic functions of the BEMS, monitoring and controlling the system in real time. Such
controller is also connected to the cloud, to a platform that enhances either the monitoring of the BEMS,
as well as its control decisions thanks to its analytic capabilities and access to third-party data —i.e.,
environmental information, weather forecast, etc. The local Building Controller and Gateway is always
connected with the building’s appliances and devices to guarantee stability of the system in case of
disruption of the Internet connection. In order to guarantee availability of the system, the Building
Controller and Gateway will be installed on a symmetric configuration on two Up Squared devices.

The selection of the main communication technologies of the BEMS was based on the premise of the
uninterrupted operation of the system. Thus, the system will run over two different communication
protocols: NarrowBand-Internet of Things (NB-IoT) and WiFi. This redundant approach will be used within
the lifetime of the project. Once the project is finished, the system will rely on NB-IoT communications,
keeping the WiFi-based subsystem, as a backup mechanism just in case NB-IoT does not demonstrate full
maturity and reliability, or just for eventual low coverage.

In the following sections, all the devices and sub-components required for level 2 and level 3 will be
explained in detail.

HEART D4.8 – Final BEMS Hardware Components 8
Version 1.0

1.1. NETWORKS AND INTERACTION WITH BUILDING DEVICES

The BEMS is based on different networks that provide devices and the control platform with different levels
of communication. As shown in the following figure, both the MIMO and the Heat Pump(s) have their own
local, ad hoc, networks to communicate with their respective local interfaces (i.e., MIMO Gateway and
Heat Pump Gateway). The MIMO Gateway, Heat Pump Gateway(s), fan-coils and the Building Controller
and Gateway will be attached to the main building wireless LAN. These devices will be also connected
directly to the Internet via NB-IoT.

Furthermore, the building has access to the Internet through a wired Broadband Modem, connected to
the Building Controller and Gateway that is configured to enable a reliable connection of BEMS and the
cloud-based adaptive-predictive control logic. A network router establishes strong security policies and
has available a minimum bandwidth in order to guarantee performance and quality of communications.

Fig. 3. BEMS information networks

Based on the Web of Things paradigm

The software of the main interface components of the building (i.e., MIMO Gateway, Heat Pump
Gateway(s), fan-coils), and the Building Controller and Gateway implements Web of Things servients. A
servient is the stack that implements the Web of Things (WoT) building blocks, which can host and expose
things and/or host clients that consume things. A servient can host and expose things (server role) and/or
consume things (client role). In this case, WoT defines a series of Application Programming Interfaces
(APIs) that enable the access to different devices through the HTTP RESTful protocol implemented in their
communication interfaces.

HEART D4.8 – Final BEMS Hardware Components 9
Version 1.0

In the WoT paradigm, all the things are described as Web resources, identified by Uniform Resource
Identifiers (URIs). Third party applications, including the Cloud-based Platform, may interact with them
using RESTful services. This offers the system low complexity and loose-coupling stateless interaction as
specified in the next sections.

About NB-IoT

NB-IoT is a narrowband radio technology developed by the 3GPP (3rd Generation Partnership Project)
released as standard in mid-2016. This technology was designed to address some of the common challenges
of Internet-of-Things projects: lowering the cost of communications; extending signal coverage; increasing
the battery life; reducing latency; enabling scalability of devices.

Using this technology, there is no need for a direct Wide Area Network (WAN) connectivity for all end
devices. The band range (300-3400 Hz) allows a high penetration in buildings. Also, NB-IoT offers a
theoretical 250 Kbits/s rate, with a maximum of 85 Kbit/s probed in studiesi that makes it cover the
requirements of the platform.

Another interesting feature is the low consumption, which depends on the connectivity (output power).
According to the sample specifications of a NB-IoT module1 it varies from 65 mA to 250mA.

This technology also provides a high level of security of communications. All NB-IoT-connected devices have
unique SIM cards, containing credentials and subscriber data. It also supports encryption using 256-bit keys
and possibility of establishing Internet Protocol Security (IPsec) tunnels for end-to-end communications.

Currently, the deployment of NB-IoT in the world is reduced to only a few pilots in major cities in Europe
and Asia but it is expected to have a complete deployment in France and Italy by the end of 2019, so the
pilots will be covered by, at least, a network carrier providing service.

1 http://www.quectel.com/UploadFile/Product/Quectel_BC95_NB-IoT_Specification_V1.3.pdf

http://www.quectel.com/UploadFile/Product/Quectel_BC95_NB-IoT_Specification_V1.3.pdf

HEART D4.8 – Final BEMS Hardware Components 10
Version 1.0

2. WIRELESS LOCAL AREA NETWORK

This section specifies the hardware required for deploying and running a local private network for the
BEMS, and the communication with the rest of the HEART’s components. This Local Network is based on the
IEEE 802.11 (WiFi) standard. It offers signal coverage to all in-building devices, including exhaustive security
measures to protect the network and guarantee privacy. The Building Controller and Gateway is in charge
of activating and monitoring the type of physical connectivity of devices, either NB.IoT or WiFi.

In order to avoid vulnerability and maximise reliability and uptime of the system, the local network
implements the following features:

• The Service Set Identifier (SSID) of the network is fixed and hidden to avoid discoverability. It is
secured and identified with a fixed SSID to protect unauthorized network access by utilizing a pre-
shared password.

• The interface components of the core network components (i.e., Heat Pump Gateway, MIMO
Gateway, Building Controller and Gateway, and fan-coils) support the IEEE 802.11b/g/n wireless
networking standard, attached to the high-throughput wireless local area network on the 2.4 GHz
band to guarantees the maximum range of the signal.

In order to design the best configuration for the wireless local network, we need to consider four key
aspects: coverage, capacity, performance, and installation.

• Coverage is the area where devices WiFi be able to connect to the network. Since, the local network
intend to cover all rooms in all building’s apartments, this variable depends on the physical
configuration of the building —floor measures, walls, etc. Devices will have ensured high-availability
so the design has the premise of having redundancy of access points. For this reason, the LAN is
configured in the 2.4 GHz band.

• Capacity is the ability of each wireless access point to handle a certain number of devices attached
to the network. The network design takes into account a minimum number of sensors, actuators,
and devices distributed within the building.

• Performance of the network implies a minimum available bandwidth enough for devices and
applications to perform their tasks in full operation. It is important selecting technologies and
systems that offer the highest levels of performance and scalability. Thus, the design has into
account the latest high-speed WiFi technologies, such as 802.11g/n, rather than cheaper legacy
products with lower performance.

• Installation and deployment of the communication wireless network in the building depends on the
distribution of rooms and possibility to connect the main communication devices via Ethernet cables
to guarantee reliable and fast operation. This is not possible in all cases, such as in the Italian pilot,
so a non-intrusive deployment. So, a WiFi mesh network is deployed in the building spaces.

The final network configuration depends on the building measurements, so floor plans and blueprints are
important to define the ideal infrastructure.

HEART D4.8 – Final BEMS Hardware Components 11
Version 1.0

2.1. NETWORK ARCHITECTURE AND IMPLEMENTATION

The Wireless Local Area Network deployed in the building covers all rooms and devices in them. The main
networking devices are connected through (Cat 5 or superior) Ethernet. An external provider will supply a
Broadband Modem to be connected to the Internet Router —the Broadband Modem and Internet Router
might be the same device, depending on the product supplied by the Internet provider.

Fig. 4. Physical connection of network devices

The Internet Router will be directly linked to the Building Controller and Gateway, acting as a
communications proxy for all the devices of the building (i.e., final sensors and actuators). This device is
the only one with granted access to the Internet —with the exception of the NB-IoT-enabled devices— to
increase the security configuration of the building devices.

In order to manage the LAN and the configuration of the devices in the building, there will be an internal
Core Router and a Core Switch, implemented in the same device. The Core Router is a networking router
that implements a DHCP server that allocates resources and purveys IPv4 directions to all the devices. The
mission of the Core Switch, connected directly to the Building Controller and Gateway, is supporting the
deployment of the LAN.

The Core Switch receives, processes, and forwards data between the Building Controller and Gateway and
the rest of the devices in the building. A local Wi-Fi mesh network will be deployed in the building using
WiFi Mesh Routers connected to the Core Switch. The WiFi Mesh Routers will be connected to WiFi Mesh
Access Points distributed in the building to deploy the wireless network. The number of the WiFi Mesh
Access Points may vary depending on the configuration of the building.

Mesh WiFi System

The solution is based on an AmpliFi Mesh Wi-Fi System2, a commercial product enabling enterprise-strength
network capabilities with simplicity, and with an appealing design. The AmpliFi’s system is composed of
AmpliFi Routers and MeshPoints, components designed to work in combination to eliminate any dead spots
in the building.

2 https://amplifi.com/docs/AmpliFi_Datasheet.pdf

HEART D4.8 – Final BEMS Hardware Components 12
Version 1.0

Fig. 5. AmpliFi HD Mesh Router and MeshPoints

This system uses mesh technology to provide powerful wireless performance in an innovative and simple
design. The main objective of the WiFi mesh network is to provide the fan-coils with WiFi connectivity with
a minimum impact for the building tenants.

This device covers all the requirements of the system, including the following specifications:

Max. Speed 1750 Mbps
Max. Transmission power 26 dBm
Antennas Dual-Band Antenna, Tri-Polarity
RJ-45 Ethernet ports (router) 4

The approximate cost of the AmpliFi HD Mesh Router is €150 (EUR), and every AmpliFi MeshPoint HD costs
€120 (EUR), approximately.

Core Switch

The configuration of the local network will be completed with a core router/switch that will be connected
through Ethernet cable, and linked to the WiFi Mesh Routers. The core switch will be implemented using a
Zyxel GS1900-10HP3.

Fig. 6. Zyxel GS1900-10HP (Core Switch)

3 ftp://ftp.zyxel.com/GS1900-48/user_guide/GS1900-48_V1_Ed2.pdf

ftp://ftp.zyxel.com/GS1900-48/user_guide/GS1900-48_V1_Ed2.pdf

HEART D4.8 – Final BEMS Hardware Components 13
Version 1.0

This device covers all the requirements of the system, including the following specifications:

Switching capacity 20 Gbit/s
MAC address table 8000 entries
PoE Mode 802.3af PoE; 802.3at PoE+
RJ-45 Ethernet ports quantity 8
Networking Interface 10/100/1000 Ethernet Ports
Maximum Power Consumption 96.2W

The approximate cost of the GS1900-10HP is €220 (EUR).

Italian Case Study

The following example of configuration corresponds to the network design for the Italian pilot, where only
the attic supports the installation and deployment of wired connections. WiFi Mesh access points (APs) are
installed in common areas (i.e. stairs).

The most challenging part of the configuration is the setup of WiFi Mesh access points to provide with full
coverage all devices in the building, and enough bandwidth to guarantee performance of the BEMS. Also, it
is important to have redundancy of wireless connectivity in case of AP failure. Although physical tests in the
field are needed to ensure an adequate configuration, this assessment is based on a realistic approach, and
early tests, presuming that the chosen APs provide strong signal in a range of 10 metres with just 3-4 drywalls
in between the AP and the device. The installation team performed several in-field tests that confirmed the
coverage of the current system design.

Two WiFi Mesh Routers will be installed in the attic, where the main network devices will be located. Also,
two APs will be installed in the common areas of each floor (1st, 2nd and 3rd floor), so six WiFi Mesh Access
Points in total. The following figure visualizes the wireless network configuration in the building.

HEART D4.8 – Final BEMS Hardware Components 14
Version 1.0

Fig. 7. Configuration of the Italian pilot local network

The complete list of components to deploy the local network for the Italian pilot is summarised in the
following table:

Device Location
(x6) AmpliFi MeshPoint HD (x2) 1st Floor; (x2) 2nd Floor; (x2) 3rd Floor
(x1) Zyxel GS1900-10HP Attic
(x2) AmpliFi Mesh Router (x2) Attic
(x1) Broadband modem4 Attic

2.2. SETUP AND OPERATION

The Local Area Network is the basic support of the Web of Thing devices ecosystem in the building. This
implies that all the things —i.e., sensors, actuators, and appliances— are identified by URIs, described using
Semantic Web formats and vocabularies, and accessible through Web Services implemented by in the
servient.

4 Provided by a local supplier

HEART D4.8 – Final BEMS Hardware Components 15
Version 1.0

Since all the things are distributed in different nodes, the wireless local network is configured to allocate
specific devices in concrete IP address ranges. Allocation of device’s IP in specific range of addresses
enhances performance and enables discoverability of new components in the system.

The local network devices will be identified in the 192.168.1.0/255 range (network mask 255.255.255.0).

Device Reserved IP Address Fixed?
Core Router 192.168.1.1 Yes
Building Controller and Gateway 192.168.1.100 Yes
MIMO Gateway(s) 192.168.1.101 — 192.168.1.105 Yes
Heat Pump Gateway(s) 192.168.1.106 — 192.168.1.110 Yes
Fan Coil(s) 192.168.1.111 — 192.168.1.211 DHCP

This configuration must be implemented in the Core Router to guarantee a correct IP assignation and the
right access to the devices.

The expected parameters for the WiFi Local Network is defined be as following:

SSID Heart_WiFi_AP
Password WiFiHEART2020
Security WPA2-PSK
Discoverable Hidden

HEART D4.8 – Final BEMS Hardware Components 16
Version 1.0

3. BUILDING CONTROLLER AND GATEWAY

The Building Controller and Gateway is the core component of the IT system in the building. It is
connected to the rest of the devices of the building and it is in charge of implementing the level 2 of the
control logic operations. Its configuration is dynamic, since it receives setup information from external
services. It acts as a proxy between the devices deployed in the building (i.e., fan-coils, Heat Pump and
MIMO) and the external services such as the cloud control platform.

This device plays the role of offline BEMS controller, allowing the basic monitoring and control logic of the
system when the BEMS components have no direct connection to the cloud platform via NB-IoT. It also acts
as gateway between the building and the Internet, enabling a direct and reliable broadband access to the
cloud platform, converting protocols, adapting packet formats, and translating messages between networks.
It also provides monitoring and reporting capabilities for system management purposes.

The gateway will be connected to the Internet through a Broadband Modem, dedicating a minimum
bandwidth to guarantee performance and efficient interoperability with the cloud-based BEMS.

The software stack implementing the logic will be regularly updated, installing patches to increase
reliability, efficiency and security compliance. The software is implemented in Python 3, and deployed on
the device using virtualisation mechanisms using Docker5.

3.1. IMPLEMENTATION

The Building Controller and Gateway is developed on an UP Squared6 board, a high performance and low
power consumption board that covers all the performance, security and connectivity requirements of the
system. In order to guarantee availability of this device, the Building Controller and Gateway will be
implemented on a symmetric configuration for redundancy purposes.

Fig. 8. Up Squared Board

5 https://www.docker.com
6 http://www.up-board.org/upsquared/specifications-up2/

https://www.docker.com/
http://www.up-board.org/upsquared/specifications-up2/

HEART D4.8 – Final BEMS Hardware Components 17
Version 1.0

This Intel®-based board is designed specifically for the Internet of Things paradigm, supporting any
operating system —the implementation will be based on Ubuntu Server—, and providing multiple interface
connections. The main controller is implemented on this board. This piece of hardware —along with a storage
hard drive— has the required process capacity to manage all the BEMS data, as well in terms of
communications. This device is connected via Gigabit Ethernet to the main network router.

The Up Squared is integrated with the M.2 2230, a kit to provide this board with WiFi connectivity, also with
an NB.IoT chipset integrated in a Pycom GPy module.

The main features of the UP Squared Board are shown the following table:

Processor Intel Pentium N4200 2.5 GHz
RAM 8GB LPDDR4
Storage 128 GB
Connections 2x Gigabit Ethernet
Consumption ~1A

In concrete, the system uses the best configuration available (i.e., Apollo Lake M Intel® Pentium™ 4C
2.5GHz, 8GB RAM and 128 GB of storage) to guarantee the performance and scalability during the lifetime
of the project. The approximate cost of this board is €300.00 (EUR).

This board is complemented with other components needed to fulfil the requirements and operation:

(×1) UP Squared board Main board, communications and processor.
(×1) M.2 2230 WiFi kit for UP Squared.
(x1) Pycom WiFi Antenna Antenna.
(x1) Pycom Cellular Antenna Antenna.
(×1) GPy NB-IoT, WiFi module.
(×1) GCBC100-2A Power consumption sensor.
(x1) mSATA 128GB Storage.
(x1) 1500VA UPS Uninterruptible Power Supply.
(x1) Power supply and case Case, power adapter, chassis

In order to guarantee the continuous operation of the system, the system may include redundancy features,
duplicating the devices. Operation will be balanced depending on the availability of the devices. This
includes: (×2) UP Squared boards, (×2) M.2 2230 WiFi kits, (x1) Pycom WiFi Antenna, (x2) Pycom Cellular
Antenna, (x2) Power supply and case.

HEART D4.8 – Final BEMS Hardware Components 18
Version 1.0

Fig. 9. Components of the Building Controller, including redundancy

The approximate cost of the simple Building Controller and Gateway (without redundancy) is €1120 (EUR).

3.2. OFFLINE CONTROL LOGIC

The Building Controller implements the offline BEMS controller. It continuously gathers information of the
status of the devices in the building and visualise data through intuitive dashboards. It and enables the
communication with the external tools such as the Cloud Platform, allowing them to configure some
parameters of the system (e.g., set point temperatures, operation limits, etc.). The system may also
configure alerts depending on the specific needs during the lifetime of the project.

This network node has the IP address 192.168.1.100 allocated.

The offline control is implemented in different virtualised Docker containers that perform decoupled
functions. The main modules that implement the offline controller, shown in the following illustration,
are: the WoT Proxy; Building Device Manager; WoT Catalogue Updater; Building Device Monitor; BEMS
Engine; Storage.

HEART D4.8 – Final BEMS Hardware Components 19
Version 1.0

Fig. 10. Software components of the Building Controller and Gateway

WoT Proxy

This module implements the WoT specification in Python 3. It acts as a proxy for all the things of the
building (i.e., smart fan-coils, Heat Pump, MIMO, and auxiliary devices). This component deploys several
services to enable interaction between the devices attached to the private local network and other
clients.

The proxy exposed the catalogue of the WoT Thing Descriptions of the building on the port 9191. The
document corresponding to the catalogue shows a list of pairs with a unique identification and the
corresponding URL path to access the corresponding WoT Thing Description. For instance,

{
"urn:org:fundacionctic:thing:fancoil:201:proxy": "/thing-proxy-fancoil-201-f23af5b0-ac0f",
"urn:org:fundacionctic:thing:fancoil:202:proxy": "/thing-proxy-fancoil-202-f3ae202e-214d",
…
}

So, for instance, dereferencing the URL http://192.168.1.100:9191/thing-proxy-fancoil-201-f23af5b0-
ac0f clients may retrieve the complete Thing Description of a specific fan-coil, including descriptive
metadata with all its properties, security measures and methods to access the information.

Building Device Manager

This set of Python 3 scripts gets information from the building devices through the WoT Catalogue and the
Things Descriptions provided by the proxy. It also persists and retrieves information to/from the local
database.

The BEMS engine uses this component to get and update values related to the statuses of devices, and the
configuration.

HEART D4.8 – Final BEMS Hardware Components 20
Version 1.0

Building WoT Catalogue Updater

This module, written in Python 3, updates the information from the WoT Catalogue periodically.

BEMS Engine

This component, implemented in Python 3 and PyKnow7, is the rule engine that manages the different
actuations on BEMS devices. This module includes a table of static rules about the operation of the BEMS.
The engine uses the static table of rules in combination with instantaneous facts (i.e., status of devices,
configurations). These facts are retrieved from the database, through the Device Manager.

Storage

All the information will be periodically stored in a local InfluxDB8 database. InfluxDB is a time series
database designed to handle high write and query loads, so the system will store the devices data along
with specific timestamps. This enables historical traceability of all the devices.

Building Device Monitor

This component implements a Grafana-based9 Web application to monitor the relevant values of the BEMS.
The configuration of this component is variable, and it depends on the stakeholders’ demand.

7 https://github.com/buguroo/pyknow
8 https://docs.influxdata.com/influxdb
9 https://grafana.com

https://github.com/buguroo/pyknow
https://docs.influxdata.com/influxdb
https://grafana.com/

HEART D4.8 – Final BEMS Hardware Components 21
Version 1.0

4. FAN-COILS

Fan-Coils are appliances based on STILLE’s commercial solution, it enables smart functions though either a
NB-IoT or the WiFi module. Although section does not include the specifications of the hardware of Fan-
Coils (it is defined in the WP6. Components for heat generation, emission and storage), this section includes
information about the communications modules that enables interoperability between fan-coils and the
BEMS.

There are three types of fan coils: Smart Fan-Coils for heating/cooling/air handling in the main rooms of
the building; DHW Fan-Coils for providing Domestic Hot Water (DHW); and Smart Radiators for heating in
the small rooms of the building. DHW Fan-Coils are only installed in the apartment bathrooms. The Smart
fan-coils provide the BEMS with information about environmental and internal variables, including: Air
temperature (inlet/outlet); Air Relative Humidity; Water flow rate; electric power consumption; and water
temperature (inlet/outlet). Additionally, DHW fan-coils measure the domestic hot water flow rate.

As shown in the following figure, fan-coils interoperate with the BEMS by:

• Sharing information: smart fan-coils send information (i.e., internal parameters, sensors, status) to
the Building Controller and Gateway, and receive information and commands (i.e., switch on/off,
set-point temperature) from it.

• Getting power: smart fan-coils receive constant input electric energy from the MIMO.

• Sharing thermal energy: smart fan-coils receive a water flow from the boiler room.

Fig. 11. Interaction of the BEMS with Smart Fan-Coils

HEART D4.8 – Final BEMS Hardware Components 22
Version 1.0

Fan-coils receive control information from the BEMS through their fan-coil gateways, implementing basic
control logic to adjust their operation.

4.1. ON-BOARD CONTROL SYSTEM

Smart fan-coils, Smart radiators and DHW Smart fan-coils will have an on-board control system that will
measure environmental and internal variables useful to achieve BEMS requests.

Fan-coils receive control information from the BEMS to adjust their operations using an interface module
(see Communication Interface and Sensors). The On-Board control system is based on an ATmega328P10
processor that controls the basic operations of the appliance (i.e., ON/OFF, critical situation, season
change, and fan speed).

Although fan-coil gateways implement three different configurations for each type of fan-coil, including
different sets of sensors and control logic, the interface with the fan-coil control PCB will be the same. The
interface with the on-board system is composed of five in/out digital pins:

In/Out Operation
in turns system ‘on’ (1) or ‘off’ (0)
in season change ‘Summer’ (1) or ‘Winter’ (0)
out compressor ‘on’ (1) or ‘off’ (0)
out Generic alarm ‘on’ (1) or ‘off’ (0)

ATmega328P (Fan-Coil Control)

The fan-coils controller is implemented using an Atmel® picoPower® ATmega328/P, a low-power CMOS 8-
bit microcontroller based on the RISC architecture. By executing powerful instructions in a single clock
cycle, the ATmega328/P achieves throughputs close to 1MIPS per MHz. This empowers systems designed to
optimize the device for power consumption versus processing speed.

Fig. 12. ATmega328P

10 http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-
328P_Datasheet.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-Microcontroller-ATmega328-328P_Datasheet.pdf

HEART D4.8 – Final BEMS Hardware Components 23
Version 1.0

The main features of this component are:

Throughput 20 MIPS @ 20MHz
Programmable Memory 32KBytes Flash
I/O 23 Programmable I/O Lines
Operating voltage 1.8 to 5.5V
Interfaces (2) SPI; Serial USART; I2C;
Consumption ~0.2mA

4.2. COMMUNICATION INTERFACE AND SENSORS

The on-board control system is connected to an interface component, controlled by a Pycom GPy, to support
both WiFi and NB-IoT communications.

Smart Fan-Coil implements a running Web of Things servient implemented in MicroPython that allows to
operate with the system. Through these web services, fan-coils receive commands from the BEMS (i.e.,
switch on, temperature set, hourly set point, desired fan speed, and season set up).

Fig. 13. Fan-coil sensors and interface components

Each type of fan-coil is based on the same control and communications module (Pycom GPy), but with
specific configuration of components.

Smart Fan-Coil Configuration

Smart fan-coils will include the following components:

(×1) Pycom GPy Wi-Fi and NB-IoT module.
(×1) Pyboard Pysense Shield with sensors (including accelerometer and air relative humidity)

HEART D4.8 – Final BEMS Hardware Components 24
Version 1.0

(×1) GCBC100-2A Power consumption.
(×2) DS18B20 Inlet/outlet water temperatures.
(×2) DS18B20 Inlet/outlet air temperatures.
(×1) G1/* Water flow sensor.

Smart Radiator Configuration

Smart radiators will include the following components:

(×1) Pycom GPy Wi-Fi and NB-IoT module.
(×1) Pyboard Pysense Shield with sensors (including accelerometer and air relative humidity)
(×1) GCBC100-2A Power consumption.
(×2) DS18B20 Inlet/outlet water temperatures.
(×1) DS18B20 Inlet air temperature.
(×1) G1/* Water flow sensor.

DHW Fan-Coil Configuration

Smart radiators will include the following components:

(×1) Pycom GPy Wi-Fi and NB-IoT module.
(×1) Pyboard Pysense Shield with sensors (including accelerometer and air relative humidity)
(×1) GCBC100-2A Power consumption.
(×2) DS18B20 Inlet/outlet water temperatures.
(×1) G1/* Water flow sensor.

Pycom GPy (WiFi and NB-IoT Support)

The Pycom GPy 11 is a microcontroller programmed in MicroPython language, so this implies a rapid
development and deployment. It has a variety of versions with multiple communication protocols as WiFi,
Bluetooth, and cellular LTE CAT M1/NB1.

Another strong point of this microcontroller is one of its shields. This implementation uses Pysense, as it
integrates an accelerometer, temperature, humidity and luminosity sensors, making it a good option to get
rid of the cables of separated sensors.

11 https://pycom.io/product/gpy/

HEART D4.8 – Final BEMS Hardware Components 25
Version 1.0

Fig. 14. Pycom GPy and Pysense
Specifications of Pycom GPy:

Processor ESP32 dual core
RAM 4MB + 520KBytes
Connectivity WiFi / Bluetooth / Serial
Internal storage 8Mbytes
GPIO ports 28
Consumption ~100mah

The unitary cost of the GPy is €45.00 EUR and the Pysense, €24.00 EUR, approximately.

Air/water temperature sensor: DS18B20

Every Smart Fan-Coil needs to measure water temperature. The DS18B2012 is a digital thermometer that
provides 9-12 bit Celsius temperature measurements. The DS18B20 communicates over a 1-Wire bus that
requires only one data line for communication with the central microprocessor. It includes alarm functions
with non-volatile user-programmable upper and lower trigger points.

An interesting feature of the DS18B20 is that it has a unique 64-bit serial code, which allows multiple
DS18B20s to function on the same 1-Wire bus. Thus, the same microprocessor may control several DS18B20s
deployed on the same appliance.

The DS18B20 has the following specifications:

Temperature precision ±0.5º Celsius
Range of measurement -55°to +125°Celsius
Consumption ~1mah
Voltage 3.0V to 5.5V
Communication Digital

12 https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

HEART D4.8 – Final BEMS Hardware Components 26
Version 1.0

Fig. 15. DS18B20 temperature sensor

The approximate unitary cost of this sensor is €4.00 (EUR).

Water Flow Sensor: G1/*

Fan-Coils need to measure the water flow rate, circulating within them. Water flow sensors consist of a
plastic valve body, a water rotor, and a hall-effect sensor. Rotor speed is determined by the flow rate and
the hall-effect sensor (transducer that varies its output voltage in response to a magnetic field) outputs the
corresponding pulse signal with the flux rate measurement. The G1/* (the concrete model depends on the
pipe diameter) will be included in fan-coils.

The G1/* has the following specifications:

Temperature precision ±0.5º Celsius
Range of measurement 1~30 litre/min
Liquid temperature <120°C
Operating pressure <1.75MPa
Load Capacity <15mA
Voltage 5V to 24V
Communication Digital

Fig. 16. G1/2 Water Flow Sensor

The approximate unitary cost of this sensor is €15.00 (EUR).

HEART D4.8 – Final BEMS Hardware Components 27
Version 1.0

DC Power Consumption: GCBC100-2A

The system collects and monitor information related to the continuous power consumption of every
controller and board. Thus the BEMS may monitor and adjust the setup with the feedback. The sensor used
to measure the power consumption is the GCBC100-2A13. It is a PCB mount current sensor for use on the
electronic measurement of DC, AC, or pulsed currents with no contact. High-precision detection is achieved
with low resistance and low heat generation, supporting the operating voltage and current of the appliances
to be measured.

The GCBC100-2A has the following specifications:

Current measuring range ±110A
Operating supply voltage 5V
Sensitivity 20 mV/A

Fig. 17. GCBC100-2A

The approximate cost of the GCBC100-2A is €10.00 (EUR) per unit.

4.3. INSTALLATION AND PINOUT

Interactions with fan-coils are performed and controlled by the local interface implemented on the GPy.
This component is linked to the on-board control board through serial port.

After the prototyping phase, the device is mounted on a specific printed circuit board (PCB), created ad hoc
with the selected configuration of sensors (see Fig. 18).

Fig. 18. Fan-coil interface PCB

13 https://www4.alps.co.jp/densokunou/productLineDetails/?productNo=GCBC100-2A

https://www4.alps.co.jp/densokunou/productLineDetails/?productNo=GCBC100-2A

HEART D4.8 – Final BEMS Hardware Components 28
Version 1.0

The GPy microcontroller is mounted on a PCB that enables external connections to all their pins through
screw connectors. The complete pin-out configuration is shown in Fig. 19.

Fig. 19. Pinout of the fan-coil interface board

The microcontroller will be connected to the fan-coil on-board control using the following pins:

HEART D4.8 – Final BEMS Hardware Components 29
Version 1.0

Fig. 20. Detailed pinout of the fan-coil interface board

The final implementation includes stickers for the easy identification of pins and facilitate the subsequent
integration in the fan-coil units.

HEART D4.8 – Final BEMS Hardware Components 30
Version 1.0

Fig. 21. Final fan-coil interface boards

As shown in Fig. 21, the fan-coil interfaces are labelled with their internal identifier. This reference,
along with the place of installation (i.e., building, floor, room) will enable the subsequent monitoring and
visualization of all devices and their setup.

4.4. DEVICE CONTROL

Fan-coils include an interface that implements a reduced version of the W3C WoT standard. This interface
is implemented on the GPy controller in Micro Python, exposing the fan-coil resources using the HTTP
protocol and JSON format. This makes the interface compatible with the rest of the BEMS components.

This software manages all the sensors and actuators installed in the fan-coils, sending and gathering values,
processing data, making conversions and exposing them to the devices connected to the internal LAN. The
interface identifies and publishes the descriptions of the fan-coil things on a private URL.

HEART D4.8 – Final BEMS Hardware Components 31
Version 1.0

Fan-coils have a fixed range of IP addresses reserved in the wireless LAN:

192.168.1.111/192.168.1.211

For instance, a fan-coil may have allocated the IP 192.168.1.111. After deferring the URL (port 80), the user
(i.e, either a machine or a person through a Web browser) retrieves a description of the thing, in JSON
format, exposing the list of list of sensors and actuators within that fan-coil:

{
 "id": "46a1680c-a668-444d-8b6f-6c7f615d312b",
 "actions": {},
 "name": "Fan_coil_01_B_01",
 "description": "Fan coil 1 in the floor 1, apartment B",
 "properties": {
 "DHW_Normal_temp": {
 "forms": [
 {
 "op": "readproperty",
 "contentType": "application/json",
 "href": "https:// 192.168.1.111/Fan_coil_01_B_01/DHW_Normal_temp"
 },
 {
 "op": "readproperty",
 "contentType": "application/json",
 "href": "https:// 192.168.1.111/Fan_coil_01_B_01/Air_RH"
 }
],
 "writable": true,
 "description": ""
 },
…

Thus, the a fan-coil identified as Fan_coil_01_B_01 (e.g., fan-coil located in floor 1, apartment B, with
ID=01) is identified with a URI that follows the following pattern:

http://HOST/Fan_Coil_[Floor]_[Appartment]_[FanCoil_ID]

As seen in the previous code, the fan-coil exposes the internal properties (sensor measurements, statuses,
etc.), as well as its potential actions (switch on/off, set point temperature changes, etc.).

For instance, the measurement of the relative humidity of this fan-coil can be retrieved using the HTTP GET
call to the resource: https://192.168.1.111/Fan_coil_01_B_01/Air_RH. It would return a JSON document
with a decimal number, such as { “value”: 45.5 }.

4.5. IMPLEMENTATION OF CONTROL LOGIC

Fan-coil gateways implement a basic logic to control the fan-coils through the on-board controller.
Depending on the type of fan-coil (i.e., smart fan-coil, DHW fan-coil and smart radiator) the GPy controller
will implement different versions of the firmware to control the fan-coils accordingly to their expected
operations.

Basically, each type of fan-coil gateway will implement basic rules to activate/deactivate the fan-coil,
depending on parameters such as set-point temperature, current room temperature, water temperature,
and summer/winter mode.

HEART D4.8 – Final BEMS Hardware Components 32
Version 1.0

Control of Smart Fan-Coils

The control of the Smart Fan-Coils (switch on/off) depends on the set-point temperature specified by the
system or the user, the room temperature (provided by the inlet temperature sensor) and the mode of
operation (cooling in summer; warming in winter). The complete set of rules of the system is shown in the
following workflow.

Fig. 22. Smart fan-coil control workflow

HEART D4.8 – Final BEMS Hardware Components 33
Version 1.0

Control of Smart Radiators

The control of the Smart Radiators (switch on/off) depends on the set-point temperature specified by the
system or the user and the room temperature (provided by the inlet temperature sensor). This type of
devices does not support cooling operation as the smart fan-coils. The complete set of rules of the system
is shown in the following workflow.

Fig. 23. Smart fan-coil control workflow

HEART D4.8 – Final BEMS Hardware Components 34
Version 1.0

Control of DHW Fan-Coils

The control of the DHW Fan-Coils (switch on/off) depends on the set-point water temperature specified by
the system, the current water temperature (provided by the inlet temperature sensor). There is a special
operation mode to prevent legionella in the water tanks. When this mode is activated (boost mode on), the
fan-coil will be switched on and the normal workflow will be bypassed. The complete set of rules of the
system is shown in the following workflow.

Fig. 24. DHW fan-coil control workflow

HEART D4.8 – Final BEMS Hardware Components 35
Version 1.0

5. HEAT PUMP GATEWAY

The Heat Pump interoperates with the BEMS by:

• Sharing information: the Heat Pump implements internally a Modbus/TCP server that enables the
operation of the device (i.e., operating modes, set point temperatures, etc.), as well as getting
the internal values.

• Getting electric energy: the Heat Pump is powered by the MIMO.

• Sharing thermal energy: the Heat Pump is linked to a water storage. Thermal energy flows from
the PCM Storage to the DHW Tank is managed by the HP Circulation Pump.

The Heat Pump is physically connected to the Heat Pump Gateway. This gateway performs the role of
communication interface with the rest of the BEMS. The Heat Pump implements a Modbus/TCP server that
enables the operation from an external device. The Heat Pump and its Gateway are directly connected
through Ethernet, creating an ad hoc local network exclusively for the heat pump operation.

The Heat Pump Gateway is in charge of exposing the commands and variables of the heat pump in form of
WoT thing descriptions.

Fig. 25. Interaction of the BEMS with the Heat Pump

HEART D4.8 – Final BEMS Hardware Components 36
Version 1.0

5.1. IMPLEMENTATION AND CONFIGURATION

The Heat Pump Gateway is implemented on an UP Board, acting as a gateway between the heat pump
and the external clients (i.e., cloud platform and building control logic), as shown in the following
diagram. The gateway deploys an implementation of the WoT (Web of Things) W3C standard, in Python 3.
The device runs on Ubuntu Server as operating system.

Fig. 26. Heat Pump and Heat Pump Gateway components

The Ethernet port of the Heat Pump Gateway must be directly connected to the Heat Pump using a Cat-5
(or superior) cross over Ethernet cable.

Fig. 27. Heat Pump Gateway installation details

HEART D4.8 – Final BEMS Hardware Components 37
Version 1.0

The communication with the Building Controller and Gateway, performed through the WiFi LAN, needs to
be pre-configured. Using this configuration, the Heat Pump Gateway implements a proxy between the
local devices and their sensors and actuators, and the internal network.

The ad hoc internal network allowing the connection between the Heat Pump and its respective gateway
has the following set up:

Device Reserved IP Address Fixed?
Heat Pump 192.168.2.1 Yes
Heat Pump Gateway 192.168.2.2 Yes

5.2. DEVICE CONTROL

The local gateway for the Heat Pump identifies and exposes all the parameters and operations of the Heat
Pump. It also translates the Modbus operations to the WoT approach using the HTTP protocol and JSON
formats. The servient that contains and serves the resources may be accessed on:

http://192.168.1.106:909014

Dereferencing this URL, the inventory of the things exposed by this gateway is shown. In this case, it only
contains the heat pump. This catalogue contains specific URIs to identify that thing, only accessible from
the local network. They follow the following pattern:

http://192.168.1.106:9090/HEART_HP_gateway-xxxx-xxxx-xxxx-xxxx-xxxx

Where xxxx-xxxx-xxxx-xxxx-xxxx is an auto generated UUID code to uniquely identify each thing.
Dereferencing those URIs, thing descriptions (i.e., descriptive metadata about its features and
characteristics) are found. These descriptions also show all the available interactions with the things.

The following code shows a partial example of description of a thing that exposes one of the Heat pump
parameters:

{
 "id": "urn:org:fundacionctic:thing:HEART_Heat_Pump",
 "name": "HEART Heat pump monitor Thing",
 "properties": {
 "Outdoor_temperature": {
 "forms": [
 {
 "href": "http://192.168.1.106:9292/heart-heat-pump-monitor-thing-5c2e5e22-039c-
f002-56c7-a9f6d63485db/property/outdoor-temperature",
 "op": "readproperty",
 "contentType": "application/json"
 },
 {
 "href": "http://192.168.1.106:9292/heart-heat-pump-monitor-thing-5c2e5e22-039c-
f002-56c7-a9f6d63485db/property/outdoor-temperature/subscription",
 "op": "observeproperty",

14 If there are several, they have the 192.168.1.106 — 192.168.1.110 range reserved for them

HEART D4.8 – Final BEMS Hardware Components 38
Version 1.0

 "contentType": "application/json"
 }
],
 "observable": true,
 "type": "string"
 },
…

Automatic scripts may get the specific URLs to gather data from the different resources (read operations),
or configure the device (write parameters). For example, in the previous example, there is a property
Outdoor_temperature that could be read fetching the resource using the GET method:
http://192.168.1.106:9292/heart-heat-pump-monitor-thing-5c2e5e22-039c-f002-56c7-a9f6d63485db/property/outdoor-temperature

The petition would trigger a process in the “thing” and return a 200 HTTP CODE (OK) with the following
body in JSON format: { “value”: 23 }

It also can be written using the PUT method to the same URL. This petition should contain in the body a
JSON with the desired value. For instance: { “value”: 120 }

It would instantly update the value in the Modbus slave, but it might take a while for it to be updated on
the Heat pump gateway. Also, the internal HTTP server manages the standard error codes in case of
inexistent resources (i.e., 404) or internal failures (i.e., 500).

Table of WoT properties and Modbus Registries:

Mode WoT Property Name Modbus Register Format
read Outdoor_temperature 10 INT16
read DHW_temperature 11 INT16
read Heat_outlet_temp 12 INT16
read Heat_inlet_temp 13 INT16
read Buffer_storage_temp 14 INT16
read ES_inlet_temp 15 INT16
read ES_outlet_temp 16 INT16
read Heating_circuit_pump 23 INT16
read Buffer_charging_pump 24 INT16
read Compressor 25 INT16
read Error 26 INT16
read four_way_valve_Air 27 INT16
read COP 30 INT16
read Operating_hours_in_DHW_mode 42-43 UINT32
read Operating_hours_in_Heat_mode 44-45 UINT32
read Calorimeter_Heating 60-61 UINT32
read Electric_meter_Heating 62-63 UINT32
read Calorimeter_DHW 64-65 UINT32
read Electric_meter_DHW 66-67 UINT32
read Electric_meter_total 68-69 UINT32
read Electric_meter_capacity 70-71 UINT32
read Calorimeter_total 72-73 UINT32
read Calorimeter_capacity 74-75 UINT32
write Operating_mode 100 UINT16
write HC_Setpoint_Room_setpoint_temp 102 INT16
write HC_Setpoint_Heat_inlet_Setpoint_tem 103 UINT16

HEART D4.8 – Final BEMS Hardware Components 39
Version 1.0

p
write HI_T_min_Cool 104 INT16
write DHW_Normal_temp 105 INT16
write DHW_Minimum_temp 106 INT16
write PV_request 117 UINT16
write Power_input_specification 125 UINT16
write Clear_error_reset 128 UINT16
write Outdoor_temperature_value 129 INT16
write Outdoor_temperature_Active 130 UINT16
write Buffer_temperature_value 131 INT16
write Buffer_temperature_Active 132 UINT16
write DHW_temp_value 133 INT16
write DHW_temp_Active 134 UINT16

HEART D4.8 – Final BEMS Hardware Components 40
Version 1.0

6. MIMO GATEWAY

The MIMO interoperates with the BEMS basically distributing the electric energy from/to the building
devices.

Likewise the Heat Pump, the MIMO is physically connected to the MIMO Gateway. This gateway performs
the role of communication interface with the rest of the BEMS. The MIMO implements a Modbus/TCP
server that enables the operation from an external device. The MIMO and its Gateway are directly
connected through Ethernet, creating an ad hoc local network exclusively for the heat pump operation.

The MIMO Gateway is in charge of exposing the commands and variables of the MIMO in form of WoT thing
descriptions.

Fig. 28. Interaction of the BEMS with the MIMO

6.1. IMPLEMENTATION AND CONFIGURATION

The MIMO Gateway is implemented on an UP Board, acting as a gateway between the MIMO and the
external clients (i.e., cloud platform and building control logic). This local gateway deploys an
implementation of the WoT (Web of Things) W3C standard, in Python 3. The device runs on Ubuntu Server
as operating system.

The following diagram shows the components of the MIMO Gateway.

HEART D4.8 – Final BEMS Hardware Components 41
Version 1.0

Fig. 29. MIMO and MIMO Gateway components

The Ethernet port of the MIMO Gateway must be directly connected to the Heat Pump using a Cat-5 (or
superior) cross over Ethernet cable.

Fig. 30. MIMO Gateway installation details

The communication with the Building Controller and Gateway, performed through the WiFi LAN, needs to
be pre-configured. Using the following configuration, the MIMO Gateway implements a proxy between the
local devices and their sensors and actuators, and the internal network.

HEART D4.8 – Final BEMS Hardware Components 42
Version 1.0

The ad hoc internal network allowing the connection between the MIMO and its respective gateway has
the following set up:

Device Reserved IP Address Fixed?
MIMO 192.168.2.1 Yes
MIMO Gateway 192.168.2.2 Yes

6.2. DEVICE CONTROL

The local gateway for the MIMO identifies and exposes all the parameters and operations on the MIMO. It
also translates the Modbus operations to the WoT approach using the HTTP protocol and JSON format. The
servient that contains and serves the resources may be accessed on:

http://192.168.1.101:909015

Dereferencing this URL an inventory of the things exposed by this servient is shown. In this case, it only
contains one, the MIMO. This catalogue of one thing contains specific URIs to identify them, only
accessible from the local network. They follow the following pattern:

http://192.168.1.101:9090/HEART_MIMO_gateway-xxxx-xxxx-xxxx-xxxx-xxxx

Where xxxx-xxxx-xxxx-xxxx-xxxx is an auto generated UUID code to uniquely identify each thing.
Dereferencing those URIs, thing descriptions (i.e., descriptive metadata about its features and
characteristics) are found. These descriptions also show all the available interactions with the things.

The following code shows a partial example of description of a thing that exposes the MIMO parameters:

{
 "id": "urn:org:fundacionctic:thing:HEART_MIMO",
 "name": "HEART MIMO monitor Thing",
 "properties": {
 "PV_Current": {
 "forms": [
 {
 "href": "http://192.168.1.101:9292/heart-mimo-monitor-thing-5c2e5e22-039c-f002-
56c7-a9f6d63485db/property/pv-current",
 "op": "readproperty",
 "contentType": "application/json"
 },
 {
 "href": "http://192.168.1.101:9292/heart-mimo-monitor-thing-5c2e5e22-039c-f002-
56c7-a9f6d63485db/property/pv-current/subscription",
 "op": "observeproperty",
 "contentType": "application/json"
 }
],
 "observable": true,
 "type": "string"
 },
…

15 If there are several, they have the 192.168.1.101 — 192.168.1.105 range reserved for them

HEART D4.8 – Final BEMS Hardware Components 43
Version 1.0

Automatic scripts may get the specific URLs to gather data from the different resources (read operations),
or configure the device (write parameters). For example, in the previous example, there is a property
PV_Current that could be read fetching the resource using the GET method: http://192.168.1.101:9292/heart-
mimo-monitor-thing-5c2e5e22-039c-f002-56c7-a9f6d63485db/property/pv-current

The petition would trigger a process in the “thing” and return a 200 HTTP CODE (OK) with the following
body in JSON format: { “value”: 5 }

In the case of writable properties, the client may use the PUT method on the URL. This petition should
contain in the body a JSON with the desired value. For instance: { “value”: 0 }

It would instantly update the value in the Modbus slave, but it might take a while for it to be updated on
the Heat pump gateway. Also, the internal HTTP server manages the standard error codes in case of
inexistent resources (i.e., 404) or internal failures (i.e., 500).

Table of WoT properties and Modbus Registries of the MIMO:

Mode WoT Property Name Modbus Register Format
write Connect_Grid 40001 UINT16
write Disconnect_Grid 40002 UINT16
write Connect_Central_Heat_Pump 40003 UINT16
write Connect_Local_Heat_Pump 40004 UINT16
write Connect_PV 40005 UINT16
write Connect_Battery 40006 UINT16
read Battery_Power_Demand 40007 INT16
read Grid_Contactor_Status 40008 UINT16
read PV_Contactor_Status 40009 UINT16
read Battery_Contactor_Status 40010 UINT16
read Grid_Protection_Relay_Status 40011 UINT16
read DC_Link_Status 40012 UINT16
read Grid_Voltage_L1 40013 UINT16
read Grid_Voltage_L2 40014 UINT16
read Grid_Voltage_L3 40015 UINT16
read Grid_Current_L1 40016 UINT16
read Grid_Current_L2 40017 UINT16
read Grid_Current_L3 40018 UINT16
read Grid_Power 40019 INT16
read PV_Voltage 40020 UINT16
read PV_Current 40021 UINT16
read PV_Input_Power 40022 UINT16
read CHP_Voltage 40023 UINT16
read CHP_Current 40024 UINT16
read CHP_Output_Power 40025 INT16
read Battery_Port_Voltage 40026 UINT16
read Battery_Port_Current 40027 INT16
read Battery_Port_Power 40028 INT16
read Local_Heat_Pumpo_Volts 40029 UINT16
read Local_Heat_Pump_Output_Power 40030 INT16
read DC_Link_Voltage 40031 UINT16
read Temperature_1 40032 INT16
read Temperature_2 40033 INT16

HEART D4.8 – Final BEMS Hardware Components 44
Version 1.0

read Temperature_3 40034 INT16
read Temperature_4 40035 INT16
read Temperature_5 40036 INT16
read Temperature_6 40037 INT16
read Temperature_7 40038 INT16
read Temperature_8 40039 INT16
read Battery_Chargue_Demand 40040 UINT16
read Battery_Master_Status 40041 UINT16
read Battery_Master_Fault_Bits 40042 UINT16
read Battery_Highest_Cell_Voltage 40043 UINT16
read Battery_Lowest_Cell_Voltage 40044 UINT16
read Battery_Array_Voltage 40045 UINT16
read Battery_State_Charge 40046 UINT16
read Battery_Charger_Connected 40047 UINT16
read Battery_Array_Current 40048 INT16
read Battery_Minutes_To_Full 40049 UINT16
read Battery_System_Temp_High 40050 INT16
read Battery_System_Temp_Low 40051 INT16
read Battery_Minutes_To_Empty 40052 UINT16
read Battery_Nodes_Missing 40053 UINT16
read Grid_Connection_Status 40054 UINT16
read PV_Connection_Status 40055 UINT16
read Battery_Connection_Status 40056 UINT16
read CHP_Connection_Status 40057 UINT16
read LHP_Connection_Status 40058 UINT16
write Disconnect_Central_Heat_Pumpdis 40059 UINT16
write Disconnect_Local_Heat_Pump 40060 UINT16
write Disconnect_PV 40061 UINT16
write Disconnect_Battery 40062 UINT16

HEART D4.8 – Final BEMS Hardware Components 45
Version 1.0

7. THERMAL ENERGY MANAGEMENT

The control of the thermal energy distribution among the building water storage devices will be controlled
by commercial Programmable Logic Controllers (PLCs) that will implement the specific rules of the BEMS.
As shown in the following figure, the devices involved in this management of thermal energy are: the PCM
Storage (Tank), Circulation Pumps, Three-way-valves, DHW Tank, and Smart fan-coils.

Fig. 31. Thermal energy flow, controlled by the BEMS

The Building Controller and Gateway will interact with the flow valves and circulation pumps in order to
monitor the distribution of fluid among the devices. The activation/deactivation commands will depend on
predefined rules, configuration and status of the system. Automatic PLCs will guarantee the robust
operation of the auxiliary systems (sensors, valves and circulation pumps) placed in the technical room as
illustrated in the following figure

HEART D4.8 – Final BEMS Hardware Components 46
Version 1.0

More in detail, the selected solution will be based on the Siemens SIMATIC S7-1200 (CPU 1215C)16, a
compact automation solution with integrated communication and technology functions. This PLC provides
the system with a reliable and flexible solution with extended communication capabilities such as:

• OPC UA Data Access as a server enables standardized horizontal and vertical communication as
well as compliance with industry-specific standards.

• Cloud connectivity that enables data storage and analysis, to guarantee efficiency and predictive
maintenance.

• Secure data transmission to preserve privacy of data.

16 https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7215-1AG40-0XB0

https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7215-1AG40-0XB0

HEART D4.8 – Final BEMS Hardware Components 47
Version 1.0

Fig. 32. SIMATIC S7-1200 PLC

Main features of the selected PLC:

CPU CPU 1215 DC/DC/DC
Memory 125 KB work memory / 4 MB Load memory
Networking 2 Industrial Ethernet ports with integrated switch
Input/Output 14 DI /10 DQ and 2 AI/2 AQ integrated
Modularity Expandable by 1 signal board (SB), 8 signal modules (SM), 3 communication modules (CM)

The control system will include the Communication Board CB 124117, supporting RS485 Modbus
communications, and the SM 1231 RTD signal module18 to support analogue input.

17 https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7241-1CH30-1XB0
18 https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7231-5PD32-0XB0

https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7241-1CH30-1XB0
https://mall.industry.siemens.com/mall/en/WW/Catalog/Product/6ES7231-5PD32-0XB0

HEART D4.8 – Final BEMS Hardware Components 48
Version 1.0

Fig. 33. Communication Board CB 1241

Main features of the CB 1241:

Interfaces Freeport; ASCII; Modbus; Modbus RTU master/slave; USS
Protocols Freeport; 3964; Modbus RTU master; Modbus RTU slave

Fig. 34. SM 1231 RTD signal module

Main features of the SM 1231 RTD:

Temperature error (+/-) 25 °C ±0.1%, to 55 °C ±0.2% total measurement range
Number of analogue
inputs

4; Resistance thermometer

Max input voltage ±35 V

HEART D4.8 – Final BEMS Hardware Components 49
Version 1.0

Temperatures will be measured using seven (7) PT100 2-wire temperature sensors.

Fig. 35. PT100 2-wire temperature sensor

The heat energy in the system will be measured through three heat counter with nominal flow of 6 m3/h
and one of 7-8 m3/h. The selected device is a Conteca Caleffi 7554. These devices provides the system
with direct local reading using a LCD screen, and a centralized bus transmission towards the main PCL
through RS-485.

Fig. 36. Conteca Caleffi 7554

HEART D4.8 – Final BEMS Hardware Components 50
Version 1.0

Main features of the Caleffi 7554:

Operation voltage 24 V (+10% / -5%) AC
Interface Bus RS-485
Measurement sensitivity <0.05 ºC

i Puschmann A et al., “Implementing NB-IoT in Software - Experiences Using the srsLTE Library”, 2007

	Table of Content
	HEART D4.8 – Final BEMS Hardware Components
	January 2020
	TABLE OF CONTENTS
	1. Hardware Components Overview
	1.1. Networks and Interaction with Building Devices
	2. Wireless Local Area Network
	2.1. Network Architecture and Implementation
	2.2. Setup and Operation
	3. Building Controller and Gateway
	3.1. Implementation
	3.2. Offline Control Logic
	4. Fan-Coils
	4.1. On-board Control System
	4.2. Communication Interface and Sensors
	Smart Fan-Coil Configuration
	Smart Radiator Configuration
	DHW Fan-Coil Configuration

	4.3. Installation and Pinout
	4.4. Device Control
	4.5. Implementation of Control logic
	Control of Smart Fan-Coils
	Control of Smart Radiators
	Control of DHW Fan-Coils

	5. Heat pump Gateway
	5.1. Implementation and Configuration
	5.2. Device Control
	6. MIMO Gateway
	6.1. Implementation and Configuration
	6.2. Device Control
	7. Thermal Energy Management

